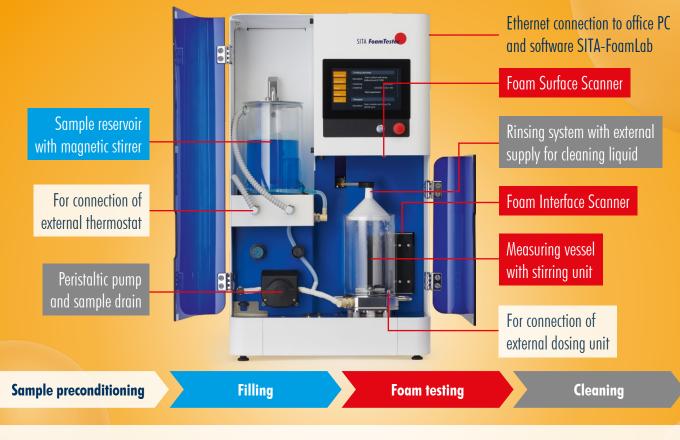
SITA Lab Solutions

SITA FoamTester

Analysing foam parameters Controlling surfactant effects


Create foam — Measure foam — Analyse foam — Understand foaming

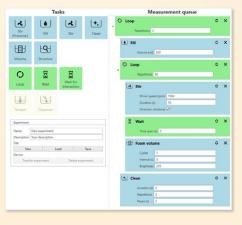
Fully-automated foam analysis

- Precise reproducible foaming
 - Innovative optical measuring systems
- Measuring foam and liquid volume
- Analysing foam structure
 - Recording drainage
- Automated cleaning

Automated SITA foam testing

Functionial components of the SITA FoamTester

Benefits of automated foam testing


- Autonomous repetition of test runs without intervention by the user
- **Convenient sample handling**
- Automatic sample preconditioning (e.g. temperature, concentration of additives) with external devices
- Integrated sample reservoir with magnetic stirrer for running multiple test series
- Automated self-cleaning system with external liquid supply (e.g. tap water)

- Immediate statements about the reproducibility
- Fast and easy screening of test and sample parameters

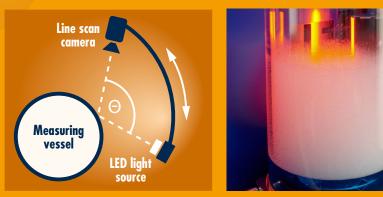
Flexible experimenting

- Easy and free creation of experiments at the office PC by drag'n'drop using fully parameterisable device tasks and supportive functions (loops and timers)
- Creating multiple re-usable templates and exactly repeatable test routines to select and start by a single touch at the device
- Instant start with test routines for typical applications pre-defined by SITA

Create foam

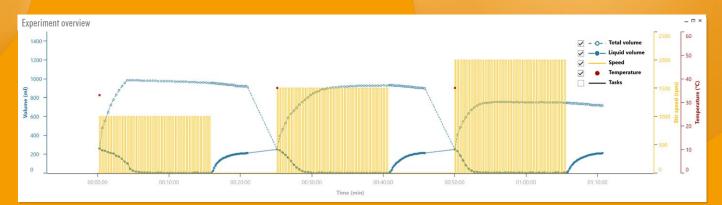
Differentiation of various sample formulations and reproducible test sequences using an applicationoriented foam creation with proven SITA method

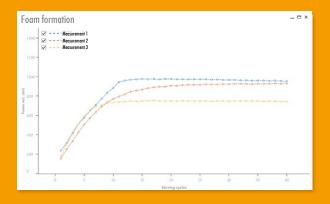
- Established SITA standardised stirring disc
- Variable stirring parameters: speed, duration, acceleration, direction, intervals
- Minor influence of the vessel glass on foam formation
- Removable measuring vessel with stirring unit

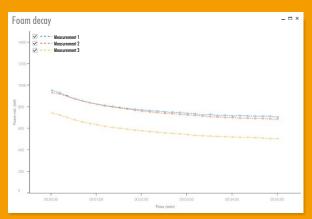

Measure foam

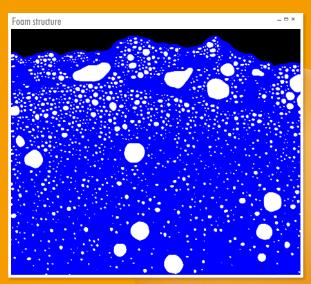
Use of optical, contactless measuring methods

• Foam Surface Scanner: Determination of the topography of the foam surface and therefore the total volume using the structured-light method


• Foam Interface Scanner: Determination of the foam structure and the liquid level by optimal use of a movable camera system, which illuminates and observes the measuring vessel at an angle ⊖ above the critical angle for total internal reflection


- Automatic acquisition of the total volume (liquid and foam) by the Foam Surface Scanner, of the residual liquid volume by the Foam Interface Scanner and of the foam volume in combination
- Recording of the foam structure over the entire foam height of the measuring vessel
- All measurements in the same measuring vessel, connected to the thermal circuit




Analyse foam and understand foaming

- Convenient evaluation of measuring data with the software SITA-FoamLab in the office
- Complete transparency of the measuring progress and the results by intuitive visualisation
- Analysis of the slope and the resulting volume during foam formation
- Analysis of the foam decay and the drainage
- Analysis of bubble sizes and shapes in the foam structure
- Comprehensive characterisation of foam and foaming
 - By the determination of further parameters such as half-life period and foam density
 - By the individual height-dependent evaluation of foam structure parameters such as average bubble size or circularity index
 - By tracking time dependent changes in the foam structure
 - Flexible comparison by clear display of different measuring sequences
 - Easy export of data and results for documentation

Fields of application

Optimisation of surfactant containing products in

- Product development
- Raw material development and selection
- Product processing and application
- Quality and process assurance

Application examples

Cosmetics

- Influence of the formulation and raw materials on foaming behavior
- Foam stability of toothpaste and foam baths
- Foam structure as a reference point for user perception

Cooling lubricants

- Influence of water hardness on aging processes
- Durability of defoamers
- Optimisation of the filtration process to prevent foaming

Inks, paints and coatings

• Effectiveness of defoamers

Cleaning agents

- Influence of temperature on the foaming of spray cleaners
- Influence of contaminations on the foaming in cleaning baths

Liquid processing industry

- Foaming behaviour of flow suspension in paper industry
- Recipe optimisation to reduce foaming in bottle filling of beverages
- Adjustment of foaming production auxiliaries in textile manufacturing
- Foaming effects of polymers in plastic production

Enter the world of REAL foaming

- Fully automated processing and flexible screening of liquids
- Established and applicationoriented recreation of foams
- Advanced measuring methods and data analysis
- ✓ Real insights into foaming

Technical data

Foam creation

Recommended sample volume

Usable measuring vessel volume

Capacity of sample reservoir

Sample tempering of measuring vessel and sample reservoir

Stirring speed

Adjustable stirring programs

(200 ... 500) ml 1,500 ml (ind. foam) Dimensions: height 180 mm diameter 110 mm 2,000 ml

(0 ... 60) °C using an optional thermostat

(0 ... 2,000) rpm (bidirectional)

speed, duration, direction, acceleration

Analysis of foam volume (foam formation and decay)

Measurement total volume, foam volume, liquid volume values Evaluated max. foam volume, parameters foam half-life, flash foam (0 ... 1,500) ml; Measuring range total volume resolution 1 ml (0 ... 500) ml; Measuring range resolution 1 ml liquid volume Analysis of foam structure **Parameters** number of bubbles. bubble size distribution,

mean bubble diameter, roundness Evaluation area height 130 mm, width 50 mm

3,200 dpi

Resolution

General data

Rinse connection	3/4" (2 6) bar
Operating temperature	(10 40) °C
Power supply	(100 240) V, (50 60) Hz, 300 W
Dimensions (HxWxD)	(770 x 450 x 305) mm
Weight	approx. 35 kg
PC interface	Ethernet

The SITA Foam Testing System is available in Expert and Basic version

- Expert version: Consists of SITA FoamTester and PC software SITA-FoamLab Expert (foam structure analysis)
- Basic version: Consists of SITA FoamTester and PC software SITA-FoamLab Basic

Accessories: External laboratory devices for sample conditioning

- Extension of experiments by additional functions for sample conditioning
- Automatic integration and direct control within the test sequence

Automatic dispenser CAT Contiburette µ10D for the dosage of liquids

Thermostat Lauda ECO E4S for heating of sample liquids (room temperature ... 200) °C

Thermostat Lauda ECO RE 415S for cooling and heating of sample liquids (-15 ... 200) °C

SITA Messtechnik GmbH Gostritzer Straße 63 01217 Dresden Germany Tel. +49 (0)351 871 8041 Fax +49 (0)351 871 8464 www.sita-lab.com info@sita-lab.com NEURTEK Pol. Ind. Azitain, Parcela 3A 20600 EIBAR - SPAIN T. 943 82 00 82 · info@neurtek.com www.neurtek.com